Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(1): e452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188604

RESUMO

Ischemic stroke is an acute serious cerebrovascular disease with high mortality and disability. Ferroptosis is an important regulated cell death (RCD) in ischemic stroke. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH), a degrading enzyme of prostaglandin E2 (PGE2), is shown to regulate RCD such as autophagy and apoptosis. The study aimed to determine whether 15-PGDH regulates ferroptosis and ischemic stroke, and further the exact mechanism. We demonstrated that overexpression of 15-PGDH in the brain tissues or primary cultured neurons significantly aggravated cerebral injury and neural ferroptosis in ischemic stroke. While inhibition of 15-PGDH significantly protected against cerebral injury and neural ferroptosis, which benefits arise from the activation of the PGE2/PGE2 receptor 4 (EP4) axis. While the impact of 15-PGDH was abolished with glutathione peroxidase 4 (GPX4) deficiency. Then, 15-PGDH inhibitor was found to promote the activation of cAMP-response element-binding protein (CREB) and nuclear factor kappa-B (NF-κB) via the PGE2/EP4 axis, subsequently transcriptionally upregulate the expression of GPX4. In summary, our study indicates that inhibition of 15-PGDH promotes the activation PGE2/EP4 axis, subsequently transcriptionally upregulates the expression of GPX4 via CREB and NF-κB, and then protects neurons from ferroptosis and alleviates the ischemic stroke. Therefore, 15-PGDH may be a potential therapeutic target for ischemic stroke.

2.
DNA Cell Biol ; 42(10): 585-593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37638805

RESUMO

Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Humanos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , RNA não Traduzido/genética
3.
Neural Regen Res ; 18(12): 2638-2644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449602

RESUMO

Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.

4.
Mol Biol Rep ; 50(2): 1655-1661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385663

RESUMO

Ferroptosis is newly identified as a non-apoptotic form of programmed cell death. It is characterized by iron-dependent intracellular accumulation of lipid peroxides which ultimately leads to oxidative stress and cell death. Ferroptosis has been identified in several diseases, such as cancer, renal failure, liver injury, and ischemia-reperfusion injury. Besides, it has been reported to be involved in the pathological mechanism of neurodegenerative diseases (NDD). In addition, interventions targeting ferroptosis can influence the course of NDD, making it a potential therapeutic target for NDD. By summarizing the current research on ferroptosis and its impact on many neurological diseases, we hope to provide valuable strategies for the underlying mechanisms and treatment of these neurological diseases.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Humanos , Ferroptose/genética , Apoptose , Morte Celular , Estresse Oxidativo/fisiologia
5.
Cell Mol Neurobiol ; 43(1): 223-236, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35106665

RESUMO

The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.


Assuntos
Barreira Hematoencefálica , Ferroptose , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Transporte Biológico
6.
Front Neurol ; 13: 893624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720081

RESUMO

Background and Purpose: Stroke is a serious fatal and disabling disease. Stroke-associated pneumonia (SAP) is the most common complication of stroke, which may further aggravate the stroke. The prevention and early prediction of SAP is a key clinical strategy. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is involved in pneumonia, while its relationship with SAP has yet to be determined. Therefore, we investigated the predictive value of 15-PGDH for SAP and visualized their relationship. Methods: Stroke patients were recruited and divided into SAP group and Non-SAP group. Baseline demographic and clinical data were obtained from the medical record system, blood samples were collected to detect relevant variables and 15-PGDH levels. Patient characteristics were compared with a t-test. Binary logistic regression analysis was performed to determine the predictive value of 15-PGDH for SAP. Restricted cubic splines (RCS) were performed to visualize the relationship between 15-PGDH and SAP risk. Finally, the SAP patient characteristics between the severe group and mild group were compared. Results: 50 patients were enrolled and divided into SAP group (n = 26) and Non-SAP group (n = 24). 15-PGDH in the SAP group was lower than that in the Non-SAP group (0.258 ± 0.275 vs. 0.784 ± 0.615, p = 0.025). Binary logistic regression analysis revealed that the lower 15-PGDH, the higher the risk of SAP (OR = 0.04, 95%CI, 0.010-0.157, p < 0.001). The RCS model showed the L-shaped relationship between 15-PGDH and SAP. Conclusions: In stroke patients, serum 15-PGDH is a valuable biomarker for predicting SAP. There is an L-shaped relationship between the level of 15-PGDH and the risk of SAP.

7.
Front Cell Dev Biol ; 10: 864635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478955

RESUMO

Ferroptosis is a new form of regulatory cell death named by Dixon in 2012, which is characterized by the accumulation of lipid peroxides and iron ions. Molecular chaperones are a class of evolutionarily conserved proteins in the cytoplasm. They recognize and bind incompletely folded or assembled proteins to help them fold, transport or prevent their aggregation, but they themselves do not participate in the formation of final products. As the largest number of molecular chaperones, heat shock proteins can be divided into five families: HSP110 (HSPH), HSP90 (HSPC), HSP70 (HSPA), HSP40 (DNAJ) and small heat shock proteins (HSPB). Different heat shock proteins play different roles in promoting or inhibiting ferroptosis in different diseases. It is known that ferroptosis is participated in tumors, nervous system diseases, renal injury and ischemia-reperfusion injury. However, there are few reviews about the relationship of heat shock proteins and ferroptosis. In this study, we systematically summarize the roles of heat shock proteins in the occurrence of ferroptosis, and predict the possible mechanisms of different families of heat shock proteins in the development of ferroptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA